

ACVATIX™

Intelligent Valve - Control valve with integrated energy measurement

EVG.., EVF..

Control valve with integrated energy data acquisition for ventilation and air conditioning plants as well as precontrol circuits in HVAC applications. Sensor-guided dynamic flow control.

- Threaded valves EVG4U10E.., DN15...50:
 - Nominal volume flow 1.5...18 m³/h
 - Externally threaded connection per ISO-228
- Flanged valves EVF4U20E.. (incl. DN150 solution), DN65...150:
 - Nominal volume flow 30...170 m³/h
 - Flange connection per ISO-7005
- System integration in building control technology over BACnet IP
- System integration in building automation and control over Modbus RTU
- Supports direct transfer to Siemens Operations Manager
- Ultrasonic volume flow measurement at measuring accuracy ± 2 % for water and ± 6 % for water-ethylene glycol mixtures
- Temperature measurement with paired immersion temperature sensors

(BTL

Intelligent Valve is a 2-port pressure independent control valve (PICV) with volume flow, temperature, and power measurement, for heating, ventilation, and air conditioning plants.

The valve can be integrated as analog (DC 0/2...10 V or 4...20 mA) or digital (BACnet IP / Modbus RTU) into the temperature control circuit. All process data (volume flow, power, primary flow and return temperature, etc.) can still be read out digitally, even if integrated as analog.

Intelligent Valve also has local limitation and optimization functions that support energy-efficient plant operation.

In addition to digital integration in the building automation and control system, integration in the cloud with the Siemens Operations Manager app supports the building operator in operating and monitoring the system, as well as evaluating energy consumption.

Intelligent Valve has the following control functions:

- Dynamic control valve
- Dynamic control valve (changeover)
- Differential pressure control
- Flow temperature control
- Heating circuit outside temperature compensated flow temperature control

Volume flow limitation and energy acquisition are available at any time in all control functions.

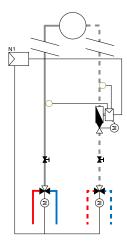
Intelligent Valve as dynamic control valve

In this control function, Intelligent Valve is part of a temperature control circuit, and receives a setpoint from a superposed automation station that it interprets, depending on the control mode, as valve position, volume flow, or power, and control accordingly.

The example illustration depicts this based on a precontrol circuit for chilled ceilings.

Automation station [N1] controls the flow temperature of the chilled ceiling circuit by demand, and specifies the setpoint of 0...100 % on Intelligent Valve. This can occur in analog form (0...100 % = DC 0...10 V), or else remotely via BACnet IP or Modbus RTU.

Intelligent Valve follows this setpoint and sets, e.g. in volume flow control mode, the appropriate volume flow.

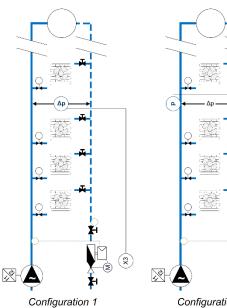

The DN150 solution is only supported in the function as dynamic control valve. Water (non-ethylene glycol mixtures) is used as the measured medium.

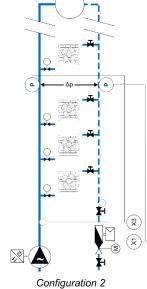
Intelligent Valve as dynamic control valve (changeover)

In this control function, Intelligent Valve acts as a dynamic control valve using 2 sets of parameters for the limitation functions, such as the maximum volume flow or the Δ T-limitation: one set for heating operation, and one set for cooling operation. The mode of operation (heating or cooling) is recognized automatically via the measured flow and return temperatures.

The example illustration depicts this based on a throttling circuit for a combined heating/cooling register.

Automation station [N1] switches between heating and cooling mode as needed, and specifies the setpoint of 0...100 % on Intelligent Valve. Intelligent Valve follows this setpoint and sets the appropriate volume flow.


Use

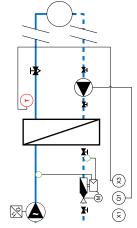

Intelligent Valve as differential pressure controller

Intelligent Valve can act as a differential pressure controller for a section of the plant. In this control function, Intelligent Valve controls independently of an automation station. It acquires the present differential pressure in the plant section and adjusts the valve position, resulting in a constant differential pressure.

There are 2 possible configurations for acquiring the present differential pressure value:

- 1. With an auxiliary differential pressure sensor [X3] measuring the pressure drop between 2 points in the plant.
- 2. With 2 auxiliary pressure sensors [X1] and [X3] measuring the 2 pressure points in the plant. The Intelligent Valve controller then calculates the drop between these 2 points in the plant.

Intelligent Valve as flow temperature controller (without outside air temperature sensor)


In this control function, Intelligent Valve assumes the role of the automation station.

Using an auxiliary secondary flow temperature sensor [X3], it acguires the flow temperature and controls to the present temperature setpoint by adjusting the volume flow.

Possible sensor types at [X3] are passive sensors with sensing elements LG-Ni-1000, DIN-Ni-1000 or Pt1000 (385/EU).

The temperature setpoint can be preset externally via BACnet IP and Modbus RTU, or analog at [X1] (0...10 V = 0...100 °C).

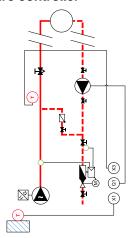
The secondary pump is released by relay [Q1] as soon as the setpoint for secondary flow temperature is > 0 °C.

Intelligent Valve as outside temperature-dependent flow temperature controller

Intelligent Valve can control the valve in a heating group to a flow temperature based on the outside temperature. In this control function, Intelligent Valve assumes the role of the automation station.

In outside-temperature-dependent control, the flow temperature [X3] is assigned to the prevailing outside air temperature [X1] via the heating curve.

Possible sensor types at [X1] are passive sensors with sensing elements LG-Ni-1000, DIN-Ni-1000 or Pt1000 (385/EU), or active sensors (0...10 V = -50...50 °C).


The secondary flow temperature sensor [X3] acquires the present flow temperature and Intelligent Valve controls it to the determined flow temperature setpoint by adjusting the volume flow.

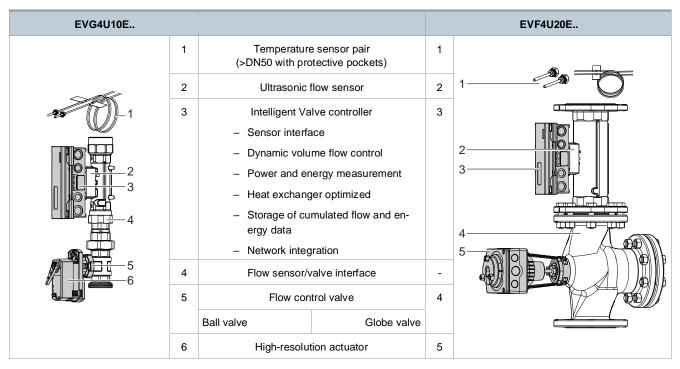
Possible sensor types at [X3] are passive sensors with sensing elements LG-Ni-1000, DIN-Ni-1000 or Pt1000 (385/EU).

In addition to the heating curve, a weekly time switch can also preset the room operating mode (Comfort, Pre-Comfort, Economy, Protection).

The heating curve and the weekly scheduler are set in ABT Go.

The heating circuit pump can be released or locked with relay [Q1].

Every type of digital integration is available in every control function. Depending on the control function, there may be some restrictions:


	Dyn. control valve / Dyn. control valve (changeover)	Differential pressure control	Flow temperature control	Heating circuit out- side temp. comp. flow temp. control					
BACnet IP		Available							
Modbus RTU		Available 1)							
Cloud	Available								

 Possible with restricted functionalities. Cf. "Intelligent Valve - Modbus Registers" [A6V12547886] ("Product documentation [▶ 22]").

Technical design

Basic design Intelligent Valve combines the following main functions:

- Exact, continuous volume flow measurement with an ultrasonic flow sensor
- Precise temperature measurement using paired Pt1000 temperature sensors
- Precise volume control using a control valve with a high-resolution actuator
- Dynamic hydronic balancing, power and energy calculations, storage of cumulated flow and energy data, as well as network integration via a central control unit

The volume flow is acquired continuously in the ultrasonic flow sensor and provided to the Intelligent Valve controller. The controller applies it as the actual value for control or limitation by guiding the control valve position until the volume flow actual value for the applicable setpoint is achieved.

Control modes as dynamic control valve

Intelligent Valve supports 3 control modes in this control function:

- Volume flow control
- Position control
- Power control

Volume flow limitation is active in all control modes!

Volume flow control

In the basic configuration, Intelligent Valve operates as an electronic PICV (*pressure-inde-pendent control valve*). This control mode is referred to as volume flow control.

The positioning signal is proportional to the volume flow to be controlled (setpoint 0 % = closed; setpoint 100 % = \dot{V}_{100}). If a volume flow limitation is activated (\dot{V}_{min} and/or \dot{V}_{max}), the setpoint range reflects these new limitation values (setpoint 0 % = \dot{V}_{min} ; setpoint 100 % = \dot{V}_{max}).

In volume flow control, the flow characteristic curve can be adapted to the heat exchanger's transfer behavior.

3 characteristic curves are available:

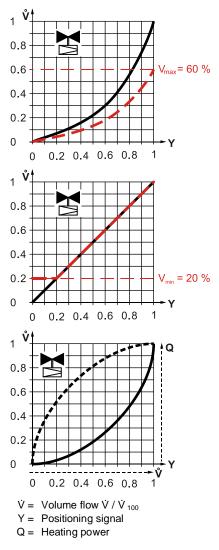
Equal percentage, optimized in the opening range (factory setting)

Recommended for heating and cooling registers, where the transfer characteristic is unknown.

Modified characteristic curve with volume flow maximum limitation at 60 %

Linear

Recommended for plate heat exchangers water/water, or injection circuits in precontrol circuits.


- : Characteristic curve cut off at volume flow minimum limitation

Heat exchanger optimized

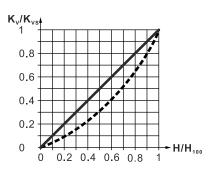
Recommended for heating and cooling registers, where the transfer characteristic (a-value) is known.

•••••: Q = f(V) Heat exchanger characteristic

...: V = f(Y) Flow characteristic for Intelligent Valve

In the event of volume flow maximum limitation, the curve always adapts to the entered limitation setpoint (example for equal percentage curve).

During volume flow minimum limitation, the characteristic curve is cut off below the minimum flow (example for a linear characteristic curve).


Position control

The control valve position is proportional to the setpoint (setpoint 0 % = closed; setpoint 100 % = H_{100}) - at the same time, the limitation to the applicable maximum volume flow (\dot{V}_{100} or \dot{V}_{max}) remains active.

Dynamic volume flow control is inactive in position control mode, and there is no electronic modification to the k_{VS} valve characteristic.

The k_{VS} valve characteristic is derived by combining the control (ball) valve characteristic and the resistance characteristic of the flow sensor.

This results in an equal percentage k_{VS} valve characteristic curve with a ngl 2.2 for valves EVG.. with a threaded connection (_____). The k_{VS} valve characteristic curve for flanged EVF.. valves is nearly linear (_____).

Power control

The design power is the reference variable. It is defined by:

- Design volume flow Vmax
- Design temperatures TVL, design and TRL, design

Design power = c × design volume flow × difference of the design temperatures

 $\dot{Q}_{\text{design}} \sim \dot{V}_{\text{max}} \times (T_{\text{VL, design}} - T_{\text{RL, design}})$

whereby \hat{Q}_{max} is the power limitation in %, in relation to the design power of the consumption (heat exchanger/precontrol unit).

The setpoint for the control power is interpreted by referencing the power limitation (Y = 0...100 % \dot{Q}_{max} ; 0 % = closed; 100 % = \dot{Q}_{max}).

The section "Sizing [▶ 9]" provides a table of the power values for water at typical tempera-

ture spreads ("Sizing as dynamic control valve with water [▶ 9]").

The maximum volume flow limitation (\dot{V}_{100} or \dot{V}_{max}) remains active in power control mode as well (adapted maximum volume flow limitation is not available, see "Operating limitations and other features [\triangleright 6]").

The flow characteristic curve is not relevant to power control.

Operating limitations and other features

Nominal volume flow and minimum required differential pressure

Intelligent Valve has, like any dynamic PICV, a nominal flow \dot{V}_{100} by build design that cannot be exceeded during operation. A minimum differential pressure (Δp_{min}) is required to achieve nominal flow; it is calculated from the Intelligent Valve kvs value.

In contrast to mechanical PICVs, the electronic volume flow control on Intelligent Valve remains active even below the minimum differential pressure - thus, the network is always optimally balanced.

Intelligent Valve supports several limitation functions:

- Maximum volume flow limit
- Minimum volume flow limit
- Maximum power limit
- Return temperature limitation (min./max. limitation)
- Temperature difference limitation between flow and return (ΔT-limitation)

- Weighted return temperature limitation
- Adapted maximum volume flow limitation
- Adapted maximum power limitation

Maximum volume flow limit

We recommend activating the maximum volume flow limitation, if the design volume flow for the part of the plant (heating coil/cooler/precontrol circuit) as controlled by Intelligent Valve, is lower than the nominal flow of the selected Intelligent Valve.

In volume flow control mode, the set volume flow \dot{V}_{max} – which may be anywhere between 5...100 % of the nominal volume flow – is interpreted as the 100 % setpoint. It only serves as a limitation value in the other control modes.

Minimum volume flow limit

If a minimum flow through the controlled part of the plant is required, this can be achieved with the volume flow minimum limitation. The limitation is of course pressure-independent, so that there is no over- or under-supply as the local differential pressure changes.

Maximum power limit

In contrast to volume flow limitation, the power limitation adapts the flow rate dynamically to the temperature distribution in the plant. Consequently, power control is more suitable for critical users than volume flow limitation.

Min./max. return temperature limitation

Modern, high-efficiency power generators must have sufficiently low/high return temperatures to achieve their performance figures/degree of efficiency. With Intelligent Valve, you can precisely limit the return temperature value as needed by the given plant.

A maximum return temperature limitation is available if Intelligent Valve is used in heating applications; a return temperature minimum limitation is available in cooling applications.

The setting is made in 2 steps:

- 1. Enable the function
- 2. Set the limitation
 - Factory setting for maximum limitation = 40 °C
 - Factory setting for minimum limitation = 10 °C
 - Setting range = 0...100 °C

ΔT-limitation

In systems where the flow temperature cannot be maintained at a constant level – e.g. due to high load fluctuation or insufficient generator capacity – limiting the difference between the flow and return temperature is an alternative to absolute return temperature limitation. ΔT -limitation ensures that the consumer is not supplied with more power than the consumer can process.

The setting is made in 2 steps:

- 1. Enable the function
- 2. Set the limitation
 - Factory setting Δ T-limitation = 6 °C - Setting range = 0...40 °C

Weighted return temperature limitation

By enabling the weighted return temperature limitation, comfort is prioritized over energy efficiency, in contrast to the Δ T-limitation. For this function, a weighted return temperature

setpoint is dynamically calculated, taking into account the design and actual flow values, as well as the design temperatures, both primary flow and primary return. A higher or lower return temperature will be allowed in order to ensure that comfort is prioritized and achieved.

The setting is made in 2 steps:

- 1. Enable the function
- 2. Set the limitation
 - Factory setting for design primary flow temperature = 55 °C
 - Factory setting for design primary return temperature = 40 °C
 - Setting range = 10...120 °C

Adapted maximum volume flow limitation

Enabling the adapted maximum volume flow limitation is a good idea in systems where the design volume flow and power in the part of the plant controlled by Intelligent Valve (heating coil/cooler/precontrol circuit) are unknown, or will regularly change in the future due to expansion of the plant or changes in use. This limitation avoids - both in the full and partial load range - short-term excessive volume flow demands from the controller, as can occur follow-ing sudden load fluctuations or switch-on processes.

The adapted maximum volume flow limitation functions as a moving maximum filter, and calculates the adapted maximum limitation value from the measured volume flow values of the last 4 days. Short-term increases are limited to this adapted maximum limitation value. Longer-term increases (lasting more than 3 hours) lead to a gradual upwards adjustment of the adapted maximum limitation value.

The function is only available in control mode "Volume flow". The setting is made by enabling the function. A setpoint is not needed.

Adapted maximum power limitation

Enabling the adapted maximum power limitation is a good idea in systems that are temperature sensitive, and where the design power in the part of the plant controlled by Intelligent Valve (heating coil/cooler/precontrol circuit) are unknown, or will regularly change in the future due to expansion of the plant or changes in use. This limitation allows for a linear heat transfer response at any load level with an adaptive maximum power value, meaning pressure- and temperature- independent control.

The adapted maximum power limitation functions as a moving maximum filter, and calculates the adapted maximum limitation value from the measured power values of the last 4 days. Short-term increases are limited to this adapted maximum limitation value. Longerterm increases (lasting more than 3 hours) lead to a gradual upwards adjustment of the adapted maximum limitation value.

The function is only available in control mode "Power". The setting is made by enabling the function. A setpoint is not needed.

Backup mode

The backup mode specifies the device behavior in case of loss of communication, cable breakage, or setpoint failure. If the setpoint is invalid for a configurable period of time, the backup mode determines the device's reaction.

This feature can be configured in 3 different ways:

- The valve is closed in backup mode.
- The device follows the last available setpoint.
- The device follows a predetermined setpoint.

As soon as a valid setpoint is available again, the backup mode stops.

Not all features are available to each control mode. Depending on the control mode, the following features are available:

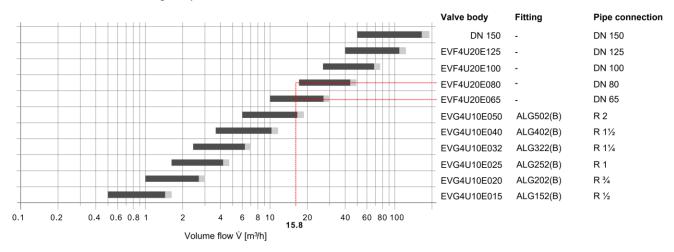
		amic control v ontrol valve (c		Differential pressure con-	Flow tempera- ture control	Heat. circuit outside temp. comp. flow	
	Position control	Volume flow control	Power control	trol		temp. control	
Setpoint	Building ma	anagement sys	tem (BMS)	ABT Go	and BMS	ABT Go	
Maximum volume flow limit			Alv	vays active			
Minimum volume flow limit		Available		-	Avai	lable	
Maximum power limit		-	Always active	-	Available		
Return temperature limitation		Available	<u>.</u>	-	Available		
ΔT-limitation		Available		-	Avai	lable	
Weighted return tem- perature limitation		Available		-	Avai	lable	
Adapted max. volume flow limitation	- Available Available				lable		
Adapted max. power limitation		-	Available	-	Available		
Backup mode 1)		Available		Always active	ys active Available -		

¹⁾ Only available for the setpoint sources "Analog (terminal)" and "Modbus RTU".

Mediums

Intelligent Valve can be used with all nominal sizes in hydronic circuits with chilled/hot water. A continuous range of maximum volume flow of 0.075...170 m³/h applies.

In addition, Intelligent Valve can also be used in applications with water-ethylene glycol mixtures. The glycol concentration in the water-ethylene glycol mixtures must range between 20...50 %. In such an application, a continuous range of maximum volume flow of $0.075...120 \text{ m}^3/\text{h}$ applies.


The lower concentration limit for water-ethylene glycol mixtures is due to the specifications by antifreeze manufacturers, which do not recommend a lower concentration.

For reliable volume flow/energy measurements of water-ethylene glycol mixtures, the concentration must be parameterized as accurately as possible (parameter "liquid concentration").

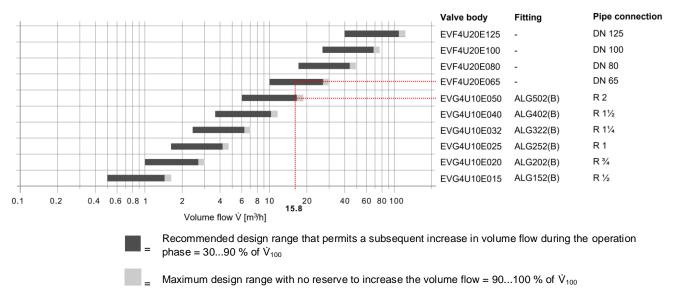
Sizing

Sizing as dynamic control valve with water

As a pressure-independent solution, it is generally easy to size Intelligent Valve. If the volume flow is an already known variable, simply select the corresponding valve plus - if desired - the suitable fittings from the diagram below. The electronic volume flow controller ensures that the valves always achieve the specified nominal volume flow. The nominal volume flow cannot however be exceeded. Although a range of 5...100 % is permissible for the maximum volume flow \dot{V}_{max} , we recommend selecting the values so that \dot{V}_{max} can be preset to a value of 30...90 %. This is to account for cases where a slightly higher or lower volume flow is required during operation than was originally calculated.

Recommended design range that permits a subsequent increase in volume flow during the operation phase = 30...90 % of \dot{V}_{100}

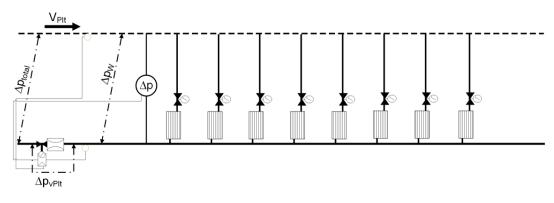
= Maximum design range with no reserve to increase the volume flow = 90...100 % of \dot{V}_{100}


Example								
Required volume flow \dot{V}_{max}	Intelligent Valve selection							
45.034	EVG4U10E050:	V₁ ₀₀ = 18 m³/h	$\Rightarrow \dot{V}_{max} = 88 \%$					
15.8 m³/h	EVF4U20E065:	V₁₀₀= 30 m³/h	$\Rightarrow \dot{V}_{max} = 53 \%$					

Maximum consumer power range at typical temperature spreads with water:										
Туре	Stock number	DN	以 ₁00							
			[m³/h]	ΔΤ 6 Κ	ΔΤ 10 Κ	ΔΤ 15 Κ	ΔΤ 20 Κ			
EVG4U10E015	S55300-M100	15	1.5	10.4	17.4	26.1	34.5			
EVG4U10E020	S55300-M101	20	3	20.9	34.8	52	70			
EVG4U10E025	S55300-M102	25	4.5	31.3	52	78	104			
EVG4U10E032	S55300-M103	32	7	49	81	122	162			
EVG4U10E040	S55300-M104	40	11.5	80	133	200	267			
EVG4U10E050	S55300-M105	50	18	125	209	313	418			
EVF4U20E065	S55300-M106	65	30	209	348	522	696			
EVF4U20E080	S55300-M107	80	48	334	557	835	1114			
EVF4U20E100	S55300-M108	100	75	522	870	1305	1740			
EVF4U20E125	S55300-M109	125	120	835	1392	2088	2784			
DN150	-	150	170	1183	1972	2958	3944			

Sizing as dynamic control valve with ethylene glycol mixtures

Sizing Intelligent Valve for use with water-ethylene glycol mixtures is done analogously to sizing with water. If the volume flow is a known variable, simply select the corresponding valve plus - if desired - the suitable fittings from the diagram below.


We recommend selecting the values so that the maximum volume flow \dot{V}_{max} must be preset to a value of 30...90 %.

Sizing as differential pressure controller

4 design parameters are required to design Intelligent Valve as differential pressure controller:

- 1. The differential pressure Δp_w to control; it may be between 25...120 kPa.
- 2. The minimum pending total differential pressure $\Delta p_{\text{total, min.}}$
- 3. The maximum pending total differential pressure $\Delta p_{\text{total, max}}$.
- 4. The design volume flow \dot{V}_{Plt} for the section of the plant controlled by Intelligent Valve.

- Δp_{total} = Available plant differential pressure
- \dot{V}_{Plt} = Design volume flow to control the partial plant
- Δp_w = Required differential pressure to control the partial plant
- Δp_{VPlt} = Available differential pressure for Intelligent Valve

1. In an initial step, the minimum differential pressure available to Intelligent Valve is calculated:

 $\Delta p_{\text{VPIt}} = \Delta p_{\text{total, min}} - \Delta p_{w}$

- 2. The minimum required k_V value for Intelligent Valve can be determined using the Δp_{vPlt} and the design volume flow \dot{V}_{Plt} : min k_V = $\dot{V}_{Plt} / \sqrt{(\Delta p_{vPlt})}$
- \Rightarrow Select the valve with the next higher k_{VS} value from the Type summary [> 15].

Sizing as flow temperature controller

As a rule, the power for transmission in this control function is available at the indicated primary design temperatures as design variables.

This information can be used to calculate the required plant design volume flow which then influences the valve selection. See "Engineering examples [> 12]".

Engineering examples

Intelligent Valve as dynamic control valve or flow temperature controller

Calculation basis

- 1. Determine heating or cooling demand Q [kW].
- 2. Determine temperature spread ΔT [K].
- 3. Calculate volume flow:

$$\dot{V}[m^{3}/h] = \frac{Q[kW] \times 3600[s]}{4190[kJ/kgK] \times \Delta T[K]}$$

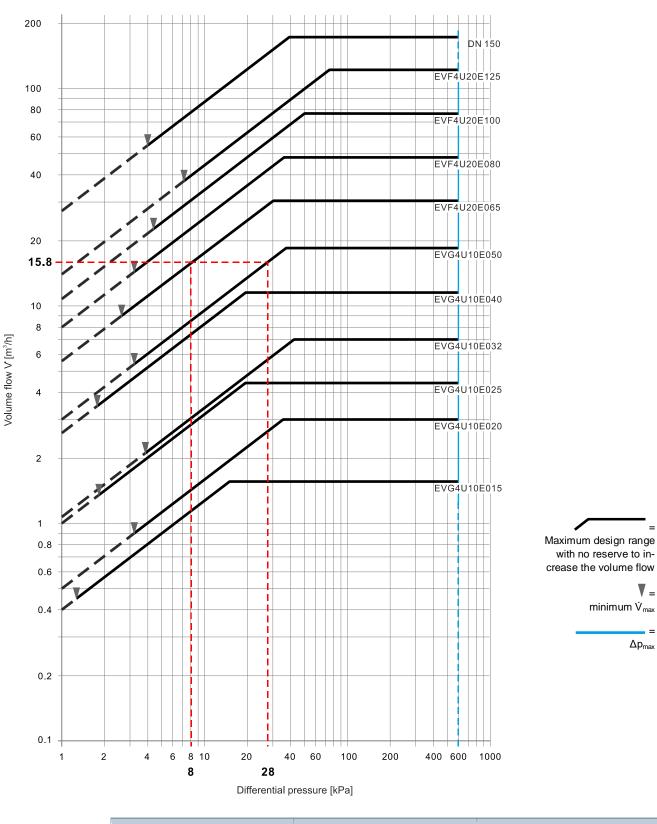
4. Select suitable Intelligent Valve EV..

Example

1.	Heating/cooling power	Q = 110 kW						
2.	Temperature spread	ΔΤ = 6 Κ						
3.	Volume flow $\dot{V}[m^3/h] = \frac{110 \text{ kW} \times 3600 \text{ s}}{4190 \text{ kJ/kgK} \times 6 \text{ K}} = 15.8 \text{ m}^3/h$ <i>Note:</i> You can use the valve slider to determine volume flow.							
4.1	 4.1 Select EV Select Intelligent Valve to operate at 90 % of the nominal volume flow to allow for higher heating or opower as needed. 							
	Selection:	EVG4U10E050 Δp _{min} = 28 kPa						
		EVF4U20E065 Δp _{min} = 8 kPa						
4.2	Evaluate presetting.							
	EVG4U10E050: 15.8 / 18 = 88 %	Optimum selection						
	EVF4U20E065: 15.8 / 30 = 53 %							

Intelligent Valve as differential pressure controller

Calculation basis


- 1. Determine minimum available differential pressure for Intelligent Valve min ΔpvPtt [kPa].
- 2. Determine plant flow \dot{V}_{Plt} [m³/h].
- 3. Calculate minimum required k_V value:

$$mink_v[m^3/h] = \frac{V_{Plt}[m^3/h]}{\sqrt{min\Delta p_{vPlt}[bar]}}$$

4. Select suitable Intelligent Valve EV ..: kvs > min kv

Example

1.	Required plant differential pressure	Δp _w = 35 kPa (0.35 bar)				
	Minimum available total differential pressure	$\Delta p_{\text{total, min}} = 50 \text{ kPa} (0.5 \text{ bar})$				
	Minimum available differential pres- sure for Intelligent Valve	$min \Delta p_{VPit} = 50 - 35 = 15 \text{ kPa} (0.15 \text{ bar})$				
2.	Plant flow $\dot{V}_{Plt} = 16m^3/h$					
3.	Required minimum k _V value $mink_v[m^3/h] = \frac{16 \text{ m}^3/h}{\sqrt{0.15 \text{ bar}}} = 41.3 \text{ m}^3/h$					
4.	Select EV Select Intelligent Valve with a minimum can be supplied even at the minimum av	$k_{\rm VS}$ of 41.3 m³/h. This ensures that a required volume flow of 16 m³/h vailable differential pressure.				
	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
5.	Evaluate presetting.					
	EVF4U20E065: 16 / 30 = 53 %	Optimum selection				

To determine the pressure drop at the requested maximum volume flow, refer to the k_{VS} values in the Type summary [> 15].

Calcu	ulated volume flow V	Intelligent Valve selection	Differential pressure [kPa]		
	15.8 m³/h	EVG4U10E050	28		
		EVF4U20E065	8		

Threaded Intelligent Valve EVG4U10E..

Туре	Stock number	DN	V ₁₀₀	<i>min</i> V _{max}	Δp _{v100}	Δp _{v50}	Δp _{max}	Δp _s	ps	k _{vs}
			[m	³ /h]			[kPa]			[m³/h]
EVG4U10E015	S55300-M100	15	1.5	0.075	14	4				4
EVG4U10E020	S55300-M101	20	3	0.15	36	9		1400 1000 800 600	1600	5
EVG4U10E025	S55300-M102	25	4.5	0.225	20	5	000 1)			10
EVG4U10E032	S55300-M103	32	7	0.35	40	10	600 ¹⁾			11
EVG4U10E040	S55300-M104	40	11.5	0.575	20	5				26
EVG4U10E050	S55300-M105	50	18	0.9	36	9				30

		Operating voltage	Positioning signal	Positioning time	Fail-safe function
EVG4U10E015	S55300-M100				
EVG4U10E020	S55300-M101	AC / DC 24 V		90 s	
EVG4U10E025	S55300-M102		DC 010 V DC 210 V 420 mA		
EVG4U10E032	S55300-M103				-
EVG4U10E040	S55300-M104				
EVG4U10E050	S55300-M105				

i

If low-noise operation is desired, a maximum differential pressure of 200 kPa is recommended.

DN	=	Nominal size
	=	Volume flow through a fully open valve
<i>min</i> Ż _{max}	=	Minimum possible preset volume flow through a fully open valve
$\Delta p_{\rm V100}$	=	Minimum required differential pressure to guarantee nominal flow \dot{V}_{100}
Δp_{V50}	=	Pressure drop over the fully opened valve at 50 % of nominal flow
Δp_{max}	=	Maximum permissible differential pressure over the valve control path, valid for the entire position- ing range of the valve-actuator unit
Δp_{s}	=	Maximum permissible differential pressure (closing pressure) at which the valve-actuator securely closes against the pressure
ps	=	Permissible operating pressure
k _{vs}	=	Nominal flow value for water (530 °C) through a fully opened valve at a differential pressure of 100 kPa (1 bar)
1)	The	e maximum permissible differential pressure of 600 kPa requires some safety measures:

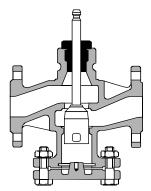
The maximum permissible differential pressure of 600 kPa requires some safety measures:
The volume flow limitation to V₁₀₀ must always be adhered to, even in manual operation.

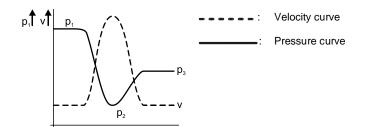
- Flushing with 600 kPa and a **fully open** valve is not permitted. During flushing, the ball valve must at all times be positioned at 50 % or less; or the flow sensor is to be replaced by a spacer during flushing.
- Cavitation must be avoided: the static pressure downstream of the valve must be at least as high as the differential pressure.

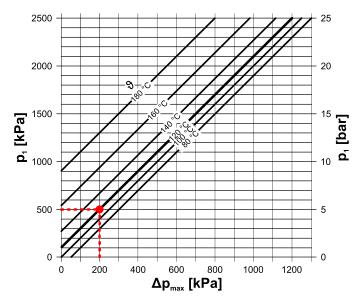
Flanged Intelligent Valve EVF4U20E..

Туре	Stock number	DN	ὑ ₁₀₀	<i>min</i> V _{max}	Δp _{V100}	Δp _{v50}	Δp _{max}	Δps	ps	k _{vs}
			[m	ı ³ /h]			[kPa]			[m³/h]
EVF4U20E065	S55300-M106	65	30	1.5	30	7		0 ¹⁾ 1600	1500	55
EVF4U20E080	S55300-M107	80	48	2.4	36	9			1200	80
EVF4U20E100	S55300-M108	100	75	3.75	44	11	600 ¹⁾			113
EVF4U20E125	S55300-M109	125	120	6	71	18			1600	142
DN150	-	150	170	8.5	37	9	500	1400		280

		Operating voltage	Positioning signal	Positioning time	Fail-safe function
EVF4U20E065	S55300-M106			20 -	
EVF4U20E080	S55300-M107	-	DC 010 V DC 210 V	30 s	
EVF4U20E100	S55300-M108	AC / DC 24 V		120 s	_
EVF4U20E125	S55300-M109		420 mA		
DN150	-	Controller + Flow sensor: AC / DC 24 V	-	120 3	

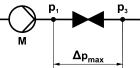

DN	=	Nominal size
	=	Volume flow through a fully open valve
<i>min</i> V _{max}	=	Minimum possible preset volume flow through a fully open valve
Δp_{V100}	=	Minimum required differential pressure to guarantee nominal flow \dot{V}_{100}
Δp_{V50}	=	Pressure drop over the fully opened valve at 50 % of nominal flow
Δp_{max}	=	Maximum permissible differential pressure over the valve control path, valid for the entire position- ing range of the valve-actuator unit
Δp_{s}	=	Maximum permissible differential pressure (closing pressure) at which the valve-actuator securely closes against the pressure
ps	=	Permissible operating pressure
\mathbf{k}_{VS}	=	Nominal flow value for water (530 °C) through a fully opened valve at a differential pressure of 100 kPa (1 bar)
1)	Th	e maximum permissible differential pressure of 600 kPa requires some safety measures:


- The volume flow limitation to V₁₀₀ must always be adhered to, even in manual operation.
 - Flushing with 600 kPa and a fully open valve is not permitted. During flushing, the ball valve must at all times be positioned at 50 % or less; or the flow sensor is to be replaced by a spacer during flushing.
 - Cavitation must be avoided: the static pressure downstream of the valve must be at least as high as the differential pressure.


Cavitation

Due to high medium velocity in the narrowest part of the valve, local negative pressure occurs (p₂). If this pressure drops below the medium's boiling pressure, cavitation occurs (steam bubbles). This may lead to material removal (abrasion). Also, when cavitation sets in, the noise level increases abruptly.

Cavitation can be avoided by limiting the pressure differential across the valve depending on the medium temperature and the pressure.



Δp_{max} = Differential pressure with valve almost fully closed at which cavitation can be largely avoided

- p₁ = Static pressure at valve inlet
- p₃ = Static pressure at valve outlet
- M = Pump
- θ = Water temperature

Scope of delivery

Intelligent Valve is supplied as a complete set consisting of:

EVG Threaded	EVF Flanged			
Intelligent Valve controller				
Act	uator			
Flow	sensor			
Contro	ol valve			
Mounting set				
Temperature sensor pair for direct installation (order protective pockets separately)	Temperature sensor pair including protective pockets			

The devices are supplied without fittings, counterflanges, and gaskets.

Welding sleeves for protective pockets, such as WZT-G12, must be ordered separately!

The DN150 solution consists of the components listed in the table below, which have to be ordered separately:

Туре	Stock number	Description
ASE4U10E	S55845-Z205	Intelligent Valve controller for PICVs, series EVG4U and EVF4U
VVF42.150KC	S55204-V186	Pressure compensated control globe valve DN150, PN16, $k_{\rm VS}315$
SAV61.00/HR	S55150-A146	Valve actuator 1600 N, 40 mm stroke, AC/DC 24 V, modulating 010 V, highly accurate positioning signal
EZU10-10025	S55845-Z230	Temperature sensor pair Pt1000, PL Ø 6 x 105 mm, cable length 2.5 m
EZT-S100	S55845-Z232	Protective pockets G $\frac{1}{2}$ B", G $\frac{1}{4}$ B", stainless steel, Ø 6.2 x 92.5 mm, for temperature sensors Ø 6 x 105 mm
EZU-WA	S55845-Z234	Wall mount for Intelligent Valve controller
SITRANS FM MAG 5100 W + SITRANS FM MAG 5000 (7ME6520-4HC12-2KA1)	-	Electromagnetic flow sensor + transmitter, DN150

For the DN150 solution, the Intelligent Valve controller cannot be mounted on the SITRANS flow sensor. Remote mounting, e.g. on the wall, is necessary.

Screws, nuts, and seals for connecting the valve and flow sensor are not included in the scope of delivery and must be procured additionally.

The SITRANS FM MAG 5000 transmitter is connected to input X3 of the control unit via a 4...20 mA signal. Input X3 can be parameterized accordingly in the basic configuration via ABT Go and ABT Site.

In addition to the controller, the sensor-transmitter combination must also be supplied with AC/DC 24 V.

Accessories

Туре	Stock number	Description		
EZT-M40	S55845-Z231	Protective pockets, brass, for DN1550	DN65125 already include protective pockets!	
EZU-WA	S55845-Z234	Wall mount for Intelligent Valve controller	At high medium tempera- tures (>90 °C)	
EZU-WB	S55845-Z236	Spacer for Intelligent Valve controller	Spacers, against risk of	
ALJ100	S55846-Z115	Temperature adapter for ball valves	condensation due to low medium temperatures	
ASZ6.6	S55845-Z108	Stem heating element for globe valves	At low medium tempera- tures (<0 °C)	
EZU10-10060	S55845-Z237	Immersion temperature sensor pair Pt1000	PL Ø 6 x 105 mm, ca- ble length 6 m	
QAC22	BPZ:QAC22	LG-Ni1000 outdoor sensor		
QAD22	BPZ:QAD22	Strap-on temperature sensor LG Ni1000		
QAE2120.010	BPZ:QAE2120.010	Immersion temperature sensor LG Ni1000, with protection pocket, 100 mm	Temperature sensors for the control functionsFlow temperature con-	
QAE2120.015	BPZ:QAE2120.015	Immersion temperature sensor LG Ni1000, with protection pocket, 150 mm	 trol Heating circuit outside temperature compen- 	
QAE2164.010	BPZ:QAE2164.010	Immersion temperature sensor DC 010 V, 100 mm	sated flow temperature control	
QAE2164.015	BPZ:QAE2164.015	Immersion temperature sensor DC 010 V, 150 mm	_	
QBE3000-D1.6	S55720-S174	Differential pressure sensor for liquids and	01.6 bar	
QBE3000-D2.5	S55720-S175	gases (010 V) for the control functionDifferential pressure control	02.5 bar	
QBE3000-D4	S55720-S176	Configuration with 1 differential pres- sure sensor measuring the pressure drop between 2 points in the plant	04 bar	
QBE2003-P1.6	S55720-S291	Pressure sensor for liquids and gases	01.6 bar	
QBE2003-P2.5	S55720-S292	(010 V) for the control functionDifferential pressure control	02.5 bar	
QBE2003-P4	S55720-S293	Configuration with 2 pressure sensors measuring 2 pressure points in the plant	04 bar	

Fittings

Туре	Stock number	Description	Description				
ALG152	BPZ:ALG152	G 1 " / Rp ½ "					
ALG202	BPZ:ALG202	G 1¼ " / Rp ¾ "					
ALG252	BPZ:ALG252	G 1½ " / Rp 1 "	Fittings sets of 2:2 cap nuts	Maille a blan a sat fina a			
ALG322	BPZ:ALG322	G 2 " / Rp 1¼ "	2 insert nuts	Malleable cast iron			
ALG402	BPZ:ALG402	G 2¼ " / Rp 1½ "	• 2 flat seals				
ALG502	BPZ:ALG502	G 2¾ " / Rp 2 "					

Туре	Stock number	Description	Description					
ALG152B	S55846-Z100	G 1 " / Rp ½ "						
ALG202B	S55846-Z102	G 1¼ " / Rp ¾ "	Fittings sets of 2: • 2 cap nuts • 2 insert nuts	Brass For medium tempera- tures up to 100 °C				
ALG252B	S55846-Z104	G 1½ " / Rp 1 "						
ALG322B	S55846-Z106	G 2 " / Rp 1¼ "						
ALG402B	S55846-Z108	G 2¼ " / Rp 1½ "	• 2 flat seals					
ALG502B	S55846-Z110	G 2¾ " / Rp 2 "						
ALR20.252B	S55845-Z273	R ¾ " / Rp 1 " Reducers, set of 2		-				
ALR32.252B	S55845-Z274	R 1¼ " / Rp 1 "	Reducer nipples, set of 2	_				

Spare parts

Type Stock number		Description		
ASE4U10E	S55845-Z205	Intelligent Valve controlle	er for PICVs, series EVG4U10E and EVF4U20E	
AVG4E015	S55845-Z206		DN15, mounting length 110 mm, threaded, G ¾ B	
AVG4E020	S55845-Z207		DN20, mounting length 130 mm, threaded, G 1 B	
AVG4E025	S55845-Z208		DN25, mounting length 150 mm, threaded, G $1\frac{1}{2}$ B	
AVG4E032	S55845-Z209		DN32, mounting length 135 mm, threaded, G 11/4 B	
AVG4E040	S55845-Z210	Ultrasonic flow sensors,	DN40, mounting length 200 mm, threaded, G 2 B	
AVG4E050	S55845-Z212	PN16	DN50, mounting length 200 mm, threaded, G 2 B	
AVF4E065	S55845-Z213		DN65, mounting length 300 mm, flanged	
AVF4E080	S55845-Z214		DN80, mounting length 300 mm, flanged	
AVF4E100	S55845-Z215	-	DN100, mounting length 360 mm, flanged	
AVF4E125 S55845-Z216			DN125, mounting length 360 mm, flanged	
SITRANS FM M	AG 5100 W ¹⁾ -	Electromagnetic flow sensor	DN150	
SITRANS FM MA	AG 5000 ¹⁾ -	Transmitter		
ALG15G10B	S55846-Z135		DN15, threaded	
ALG20G15B	S55846-Z136		DN20, threaded	
ALG25G25B	S55846-Z137		DN25, threaded	
ALG32G20B	S55846-Z138		DN32, threaded	
ALG40G32B	S55846-Z139	Control valve mounting	DN40, threaded	
ALG50G32B	S55846-Z140	sets PN16	DN50, threaded	
ALF4E065 ALF4E080	S55845-Z218		DN65, flanged	
	S55845-Z219		DN80, flanged	
ALF4E100	S55845-Z220		DN100, flanged	
ALF4E125	S55845-Z221		DN125, flanged	

Туре	Stock number	Description			
EZU10-2615	S55845-Z229	Temperature sensor	DS M10x1, Ø 5.2 x 26 mm, cable length 1.5 m		
EZU10-10025	S55845-Z230	pair Pt1000	PLØ6x105mm, cable length 2.5m		
EZT-S100	S55845-Z232	Protective pocket G $1\!\!\!/_2$ B ", G $1\!\!\!/_4$ B ", stainless steel, Ø 6.2 x 92.5 mm, for temperature sensors Ø 6 x 105 mm			
VAG61.15-6.3	S55230-V104		DN15, k _{vs} 6.3		
VAG61.20-10	S55230-V107	-	DN20, k _{VS} 10		
VAG61.25-16	S55230-V110	2-port control ball	DN25, k _{vs} 16		
VAG61.32-25	S55230-V113	valves, externally threaded, PN40	DN32, k _{VS} 25		
VAG61.40-40	S55230-V116		DN40, k _{vs} 40		
VAG61.50-63	55230-V119	_	DN50, k _{vs} 63		
VVF42.65KC 2)	S55204-V182		DN65, k _{vs} 63		
VVF42.80KC 2)	S55204-V183	Pressure compensated	DN80, k _{vs} 100		
VVF42.100KC 2)	S55204-V184	control globe valves,	DN100, k _{vs} 160		
VVF42.125KC 2)	S55204-V185	flanged, PN16	DN125, k _{VS} 200		
VVF42.150KC ¹⁾	S55204-V186	-	DN150, k _{vs} 315		
GLA161.9E/HR	S55499-D444		alves, AC/DC 24 V, 10 Nm, NSR, modulating 010 V ng signal, only for use with Intelligent Valve		
SAX61.03/HR	S55150-A142	Valve actuator 800 N, 20 mm stroke, AC/DC 24 V, modulating 010 V Highly accurate positioning signal, only for use with Intelligent Valve EVF4U20E, DN65 and DN80			
SAV61.00/HR	S55150-A146	Valve actuator 1600 N, 40 mm stroke, AC/DC 24 V, modulating 010 V Highly accurate positioning signal, only for use with Intelligent Valve EVF4U20E, DN100 and DN125			
428488060	BPZ:428488060		For VVF42.65KC and VVF42.80KC		
467956290	BPZ:467956290	Stem sealing glands	For VVF42.100KC and VVF42.125KC		

¹⁾ Only available as spare part for DN150

²⁾ Only available as spare part for EVF4U20E..

Product documentation

Title	Content		Document ID
Intelligent Valve - Control valve with integrated energy measurement	Data sheet: Product description EVG, EVF		A6V11444716
Rotary actuator for ball values in combination with the Intelligent Valve controller	Data sheet: Product description GLA161.9E/HR		
Electromotive actuators in combination with the Intelli- gent Valve controller	Data sheet: Product description SAX61.03/HR, SAV61.00/HR		A6V11418660
Actuators SAX, SAY, SAV, SAL for valves	tors SAX, SAY, SAV, SAL for valves Basic documentation: Comprehensive information on the new generation of SAX, SAV actuators		P4040
EVG/EXG/EVF/EXF	Mounting instructions		A6V11449479
GLA161.9E/HR	Mounting instructions		A6V11418688
AVG4, AVF4	Mounting instructions		A6V11478285
Intelligent Valve – Commissioning with ABT Go	Commissioning instructions: Step-by-step instructions how to configure and corr sion with ABT Go	nmis-	A6V11422293
Intelligent Valve – Engineering/Commissioning in Desigo	Engineering instructions: Step-by-step description of integration in Desigo PX plants		A6V11572317
Intelligent Valve – BACnet Objects	List of BACnet objects for Intelligent Valve		A6V11757108
Intelligent Valve – Modbus Registers	Description of Modbus registers for Intelligent Valve	A6V12547886	
Intelligent Valve – Onboarding in Building X Cloud	igent Valve – Onboarding in Building X Cloud Step-by-step description of integration in Siemens Build- ing X Cloud and Operations Manager		A6V11999683
Intelligent Valve as dynamic control valve	Application description: Detailed description of configuration and functionalities for control function "Dynamic control valve"		A6V12191167
Intelligent Valve as dynamic control valve (changeover)	Application description: Detailed description of configuration and functional control function "Control valve for changeover"	A6V13443772	
Intelligent Valve as differential pressure controller	Application description: Detailed description of configuration and functional control function "Differential pressure control"	ities for	A6V12191175
Intelligent Valve as flow temperature controller	Application description: Detailed description of configuration and functional control function "Flow temperature control"	ities for	A6V12191200
Intelligent Valve as outside temperature-dependent flow temperature controller	dent flow Application description: Detailed description of configuration and functionalities for control function "Heating circuit outside temperature com- pensated flow temperature control"		A6V12191203
Readme OSS "Intelligent Valve"	OSS document		A6V11676101
	Open source software components, copyrights, licensing agreements	V2.0	A6V12343374
	V3.0 V4.0		A6V13095123
			A6V14032035
		V5.0	A6V15968790

Related documents such as the environmental declarations, declarations of conformity, etc., can be downloaded from the following Internet address:

www.siemens.com/bt/download

Notes

Safety

Failure to comply with national safety regulations may result in personal injury and property damage.

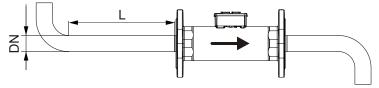
Observe national provisions and comply with the appropriate safety regulations.

Qualified personnel

NOTICE				
!	 Qualified personnel! Improper installation may override safety measures that a layperson may not recognize. Specialized knowledge of heating and air conditioning plants is required for installation. Only properly trained personnel may install the equipment. Prevent access to laypersons, especially children. 			

Only persons who can reasonably be expected to reliably conduct the work may actually perform the tasks. Do not permit persons whose reactions may be impaired, e.g. by drugs, alcohol, or medications, to perform the tasks.

Heating specialist

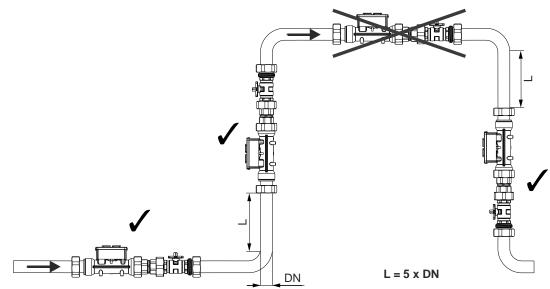

National safety regulations

Heating specialists are persons who are capable of performing the mechanical work on heating and air conditioning plants and to independently recognize and avoid hazards due to their technical training, knowledge, and experience as well as their knowledge of applicable standards and regulations.

Heating specialists are specially trained for the work environment where they are active and know the relevant standards and regulations.

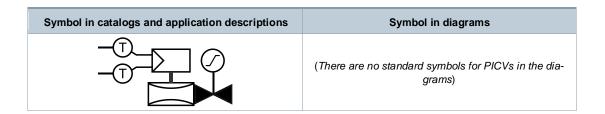
Engineering

An unhindered inlet section of $L \ge 5 \times DN$ must be maintained upstream of the flow sensor to guarantee the indicated measurement and control accuracy.

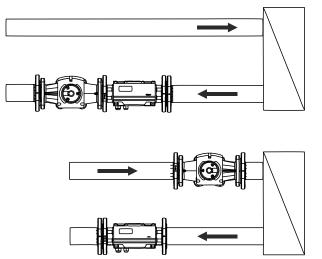

L ≥ 5 x DN

Symbol / flow direction	Flow in control mode		Valve stem	
EVG / EVF	Inlet	Outlet	Closes	Opens
	Flow direction		SAX / SAV: Retracts	SAX / SAV: Extends
Flow direction			GLA: Clockwise rotation	GLA: Counterclockwise rotation

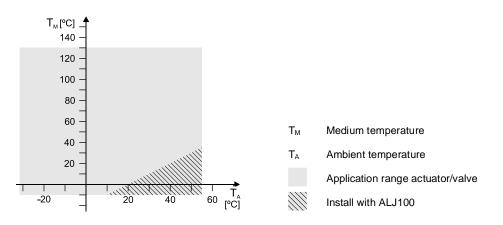
The indicated flow direction (arrow on the flow sensor and valve body) must be correct; Intelligent Valve cannot otherwise be operated!


i

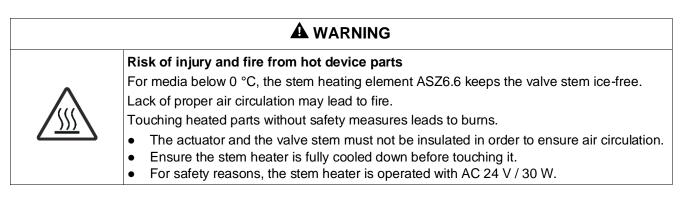
Do not install it at the highest point on the partial plant since air bubbles may otherwise collect in the flow meter.


The rule is: *measure first, then control* – in other words, we recommend mounting the flow sensor upstream of the control valve in a compact installation.

Intelligent Valve must be installed in the return for optimum performance. The components are subject to less wear and tear due to the lower temperatures.

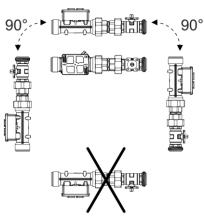


We recommend installing a filter or strainer in the flow upstream of the heat exchanger. This increases the reliability and life cycle of Intelligent Valve.


The flow sensor and control valve can be installed separately:

The actuator GLA161.9E/HR may only be used at medium temperatures >0 °C. If condensation occurs at the mounting site, the use of the temperature adapter ALJ100 as spacer is recommended in order to protect the actuator. If the medium temperature is ≤ 0 °C, the adapter shaft must be greased with silicon grease.

For actuators SAX61.03/HR and SAV61.00/HR, the use of the stem heating element ASZ6.6 is required with medium temperatures <0 °C, in order to prevent the valve from freezing.

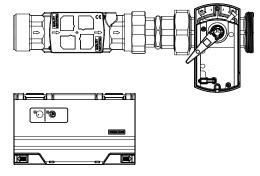


Mounting

Intelligent Valve is assembled at the mounting site. No adjustments, with the exception of configuring with the ABT Go app (see "Commissioning [\triangleright 28]") nor special tools are required.

Separate mounting instructions are included with the valve and flow sensor (see "Product documentation [> 22]").

Mounting positions

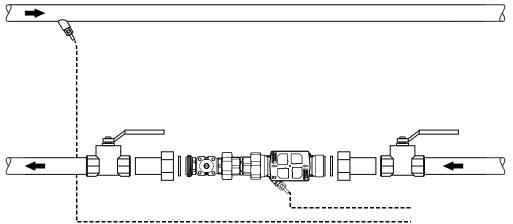

Mounting the controller

The controller can be mounted either onto the flow sensor or on the wall.

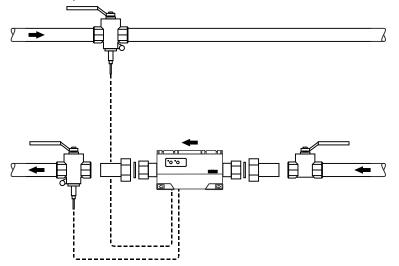
For the DN150 solution, the controller cannot be mounted onto the flow sensor. Wall mounting is recommended.

Mounting the flow sensor

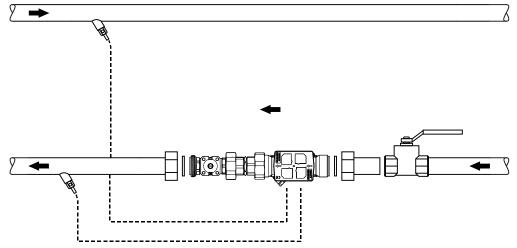
Mount the flow sensor in the return if the media temperatures exceed 90 °C. If that is not possible, the Intelligent Valve controller must be mounted away from the flow sensor, using the wall-mount plate EZU-WA.



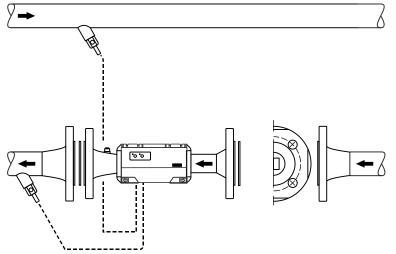
Mounting the temperature sensors


Threaded valves EVG4U10E..

The EVG.. threaded valves are supplied with direct immersion temperature sensors EZU10-2615.


The sensors with the M10x1 threaded connection can be directly immersed in the flow sensor. In this case, the second temperature sensor is also directly immersed with the WZT-G10 welding sleeve (available as accessory).

As an alternative, the sensors can be immersed directly in off-the-shelf ball valves with integrated measuring points (e.g. Siemens WZT-K.. / Jumo 902442/11) or t-pieces (e.g. Jumo 902442/31).


The brass protective pockets EZT-M40 are available for mounting with protective pockets.

Flanged valves EVF4U20E..

The EVF.. flanged valves include the temperature sensors EZU10-10025 for installing in the protective pockets EZT-S100 (also included).

Welding sleeves must be planned on the construction side (e.g. WZT-G12) – installation example with protective pocket.

The device has only a simple user interface.

The Siemens ABT Go app is used to actually commission the device.

ABT Go App (Version 3.3.1 or later)

The Siemens ABT Go app is available in iOS and Android versions in the corresponding app stores, and can be used on smartphones and tablets. It connects directly over WLAN. The Intelligent Valve's own WLAN key activates the device's WLAN access point.

The following are the most important setting parameters for commissioning Intelligent Valve:

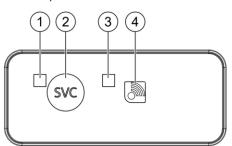
Parameter	Value range	Description	Factory setting	Access level
Valve design	2-port3-port	Selection whether a 2-port or 3-port valve is being controlled. <i>Must be set correctly to use 3-port valves</i> <i>EXG4U10E or EXF4U20E!</i>	2-port	Measuring and control techni- cian (MCT)
Control func- tion	 Dynamic control valve Control valve for changeover Differential pressure control Flow temperature control Heating circuit outside temperature compensated flow temperature control 	See "Use [▶ 2]"	Dynamic control valve	МСТ
Control mode	PositionVolume flowPower	See "Control modes as dynamic control valve [▶ 5]"	Volume flow	МСТ
Й _{тах}	5100 %	Maximum volume flow applicable to all con- trol modes. Used for hydronic balancing of the consumer. Can be set in ABT Go in the units [m ³ /h], [l/h], [l/min], or [l/s].	Active 100 %	Installer
Ů _{min}	2.520 % Max.: V̈ _{max} %	Minimum volume flow applicable to all con- trol types. Cannot be greater than \dot{V}_{max} . Can be set in ABT Go in the units [m ³ /h], [l/h], [l/min], or [l/s].	Inactive	Installer
Setpoint source	 Analog (input X1) [terminal] Network (BACnet/IP) Network (Modbus RTU) 	Selection whether to interpret input X1 as the setpoint, whether it originates from a BACnet network or whether it is set locally to a fixed value via a Modbus register.	Analog (input X1)	МСТ
Setpoint sig- nal type	 010 V 210 V 420 mA 	Signal type applied to input X1	010 V	МСТ
Actual value parameter	 Position Volume flow Power Primary flow temperature Primary return temperature Temperature difference flow/return 	Selection of what the analog signal on output X2 represents. If "Volume flow" is selected: $0V_{100} = 0100$ %.	Deactivated	МСТ
Actual value signal type	 010 V 210 V 420 mA 	Signal type applied to output X2	-	MCT
Flow charac- teristic	 Linear Equal percentage Heat exchanger optimized 	The flow characteristic can be selected in the control mode "Volume flow".	Linear	МСТ

User interface on the device

Service LED [1]

Indicates the operating state (see table below)

Service button [2]


- Trigger wink
- Override setpoint and set V_{max} for 10 min (press for 3...6 s)
- Start flow test (press for 6...8 s)

Communication LED [3]

• Indicates the communication state (see table below)

WLAN button [4]

• Enable integrated WLAN Access Point for 10 min (press briefly, ca. 0.5 s)

- Reset device to factory settings
 - Press and hold both buttons ([2], [4]) at the same time for 10...15 s: the LEDs ([1], [3]) slowly flash orange for 10 s.

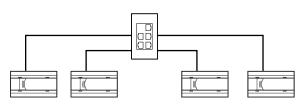
You can cancel the process during these 10 s by releasing the buttons.

- After blinking for 10 s, the LEDs flash quickly for ca. 5 s and the reset is triggered by releasing the buttons.
- The controller returns to normal operation without resetting if you continue to press the buttons until the flashing stops.

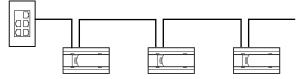
NOTICE		
1	All configurations, network settings, commissioning parameters, and passwords are set to factory settings!	
•	This action cannot be cancelled nor reversed.	

Service LE	ED		SVC
Color	Blinking pa	attern	Description
	On	Off	
White	Steady	-	Device starting up
Green	0.5 s	0.5 s	Configuration mode
	4.75 s	0.25 s	Normal operation
	0.25 s	0.25 s	Stop local forced control
Blue	0.5 s	0.5 s	Local forced control – flow test
Yellow	0.5 s	0.5 s	Local forced control – continuous volume flow \dot{V}_{max}
Red	0.5 s	0.5 s	Input/output or component fault: Flow sensor Wrong direction of flow Air in sensor Sensor connection faulty
			 Temperature sensors Damaged cable Short circuit Actuator Jammed Faulty connection Setpoint input terminal Faulty connection Signal invalid
	2 s / 5 Hz	- / 5 Hz	Flashing after wink command for physical device identification ¹⁾
	Steady	-	System fault
Orange	0.5 s	0.5 s	Reset to factory settings being prepared
	0.1 s	0.1 s	Reset to factory settings is triggered
-	-	-	Undervoltage

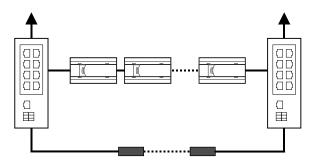
Communication LED			<u></u>		
Color	Blinking p	attern	Description		
	On	Off			
-	-	-	No communicationEthernet cable unpluggedDevice starting up		
Blue	0.5 s	0.5 s	WLAN enabled		
	Steady	-	WLAN data transmission		
Green	0.5 s	0.5 s	TCP/IP communication error – IP address not available		
	Steady	-	TCP/IP data transmission 1)		
Purple	0.5 s	0.5 s	TCP/IP data transmission with Siemens Operations Manager (Cloud)		
Orange	Steady	-	Modbus connected and configured – no data transmission via EIA-485		
	0.5 s	0.5 s	Active communication via EIA-485		
	0.5 s	0.5 s	Reset to factory settings being prepared ²⁾		
	0.1 s	0.1 s	Reset to factory settings is triggered		


¹⁾ With a daisy chain layout, it is only possible to check if a neighbor device is connected – the chain to the switch/router is not ensured and may even be broken.

²⁾ Applies only if SVC LED also flashes synchronously.


Network integration BACnet IP

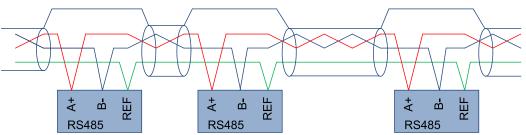
Intelligent Valve can be integrated into a BACnet IP network via TCP/IP. The device supports:


• Star topologies

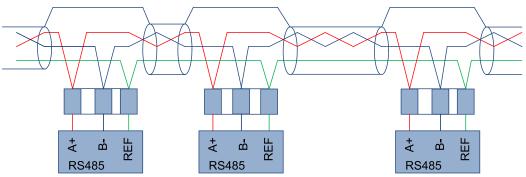
• Line topologies (daisy chain)

- Ring topologies
 - Note here that network switches with "Rapid Spanning Tree Protocol (RSTP)" are used.

For daisy chains, it is recommended not to use more than 10 devices per chain.


A complete list of supported BACnet data points is included in the document "Intelligent Valve – BACnet Objects" (see "Product documentation [▶ 22]").

ABT Go app configures the network parameters (IP address, subsegment, etc.).


Network integration Modbus RTU

Intelligent Valve can be integrated into a Modbus RTU network via EIA-485. Although the RS485 standard is simple and well-proven in principle, there are important requirements and experience must be taken into account. This starts with choosing the appropriate topology:

- Best: Individual line
 - The best topology is a single line (line topology) with the bus cable connected directly to the individual devices (daisy chain). This type of connection has the fewest problems.

- Disadvantages of intermediate terminals
 - Connecting network devices via intermediate terminals and stub lines opens complicated paths for reflections and harmonics to the electrical signals. It is obvious that long and non-twisted intermediate lines increase the risk of interference.

Maintenance

The control valves EVG.. and EVF.. are maintenance free.

Disposal

This symbol or any other national label indicate that the product, its packaging, and, where applicable, any batteries may not be disposed of as domestic waste. Delete all personal data and dispose of the item(s) at separate collection and recycling facilities in accordance with local and national legislation.

For additional details, refer to Siemens information on disposal.

Warranty

Intended use

Â	 Intended use Improper use can result in injury as well as damage to the product or plant. Siemens product may only be used with user cases set forth in the catalog and associated technical documentation. User-related technical data are only guaranteed in connection with the products listed in this document. Siemens rejects any and all warranties in the event that third-party products are used. Trouble-free and safe product operation presupposes transport, storage, setup, mounting, installation, commissioning, operation, and servicing as intended. You must comply with permissible ambient conditions. Comply with all notes in the associated documentation. 			

Exemption from liability

The content of this document was reviewed to ensure it matches the hardware and firmware described herein. Nevertheless, differences may occur so that we are unable to fully guarantee a complete match. The information provided in this document is reviewed on a regular basis and any required corrections are added to the next edition. We always welcome suggestions on how to improve documentation.

Radio equipment directive

The device uses a harmonized frequency in Europe and also meets the requirements under the Directive on Radio Equipment (2014/53/EU, previously 1999/5/EC).

Open Source Software (OSS)

Software license overview

These devices use Open Source Software (OSS); see the OSS document on the specific controller type and VVS.

All Open Source Software components used in the product (including copyrights and licensing agreement) are available at http://siemens.com/bt/download.

Firmware version OSS document			Controller	
	Document ID	Title		
FW01.21.xxxxx	A6V15968790	Readme OSS "Intelligent Valve", V5.0 (FW1.21.10552 onwards)		
	A6V14032035	Readme OSS "Intelligent Valve", V4.0		
FW01.20.xxxxx	A C) /4200 5402		ASE4U10E	
FW01.19.xxxxx	A6V13095123	Readme OSS "Intelligent Valve", V3.0		
FW01.18.xxxxx	ACV/10040074	Readme OSS "Intelligent Valve", V2.0		
FW01.17.xxxxx	A6V12343374			
FW01.16.xxxxx		Readme OSS "Intelligent Valve", V1.2		
FW01.15.xxxxx	A6V11676101			
FW01.14.xxxxx				
FW01.13.xxxxx				

Cyber security disclaimer

Siemens provides a portfolio of products, solutions, systems and services that includes security functions that support the secure operation of plants, systems, machines and networks. In the field of Building Technologies, this includes building automation and control, fire safety, security management as well as physical security systems.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art security concept. Siemens' portfolio only forms one element of such a concept.

You are responsible for preventing unauthorized access to your plants, systems, machines and networks which should only be connected to an enterprise network or the internet if and to the extent such a connection is necessary and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place. Additionally, Siemens' guidance on appropriate security measures should be taken into account. For additional information, please contact your Siemens sales representative or visit the following website:

https://www.siemens.com/global/en/products/automation/topic-areas/industrial-cybersecurity.html.

Siemens' portfolio undergoes continuous development to make it more secure. Siemens strongly recommends that updates are applied as soon as they are available and that the latest versions are used. Use of versions that are no longer supported, and failure to apply the latest updates may increase your exposure to cyber threats. Siemens strongly recommends to comply with security advisories on the latest security threats, patches and other related measures, published, among others, under the following website:

https://www.siemens.com/cert/ => 'Siemens Security Advisories'.

Dimensions and weight

See "Dimensions [► 51]"

Power supply		EVG4U10E	EVF4U20E DN 6580	EVF4U20E DN 100125	DN150		
Operating voltage			AC 24 V ~ ±20 % (19.228.8 V ~) / DC 24 V = ±20 % (19.228.8 V ~)				
Frequen	су		5	50/60 Hz			
Power co	onsumption including connected	I field devices					
	Running	5 W	6.25 W	8 W	17 W		
	Holding	2.7 W	3.5 W	3.5 W	12.5 W		
	Sizing	8.5 VA	14 VA	16 VA	25 VA		
Power co	onsumption ASE4U10E	,			L		
	Running		3.5 W				
	Holding		2 W				
Sizing			6 VA (controller without actuator!)				
Internal fuse			Irreversible				
External fusing of supply line		Circuit bre	• Circuit breaker: Max. 13 A, type B, C, D per EN 60898				
Accesso	ry: Stem heating element ASZ6	.6					
	Operating voltage	AC 24 V ~ / DC	24 V = (19.22	28.8 V)			
	Power consumption (at 50 Hz)	50 VA / 30 W					
	Inrush current (cold)	Max 8.5 A (ma	Max 8.5 A (max temperature 85 °C/185 °F)				

Interfaces			
Ethernet	Plugs	2 x RJ45, screened	
	Interface type	100BASE-TX, IEEE 802.3 compatible	
	Bit rate	10/100 Mbps, autosensing	
	Protocol	BACnet over UDP/IP	
USB (2.0)	Plug	Micro-B	
	Data rate	1.5 Mbps and 12 Mbps	
		No galvanic isolation to ground	
L-bus	Baud rate	2.4 kBaud	
	Bus power supply	10 mA	
		Short-circuit proof: Protection against faulty wiring at max. AC 24 V	

WLAN interfa	WLAN interface				
Interface type		Wire	Wireless access point		
Supported standards		IEE	IEEE 802.11b/g/n		
Frequency ba	nd	2.4	2.4 GHz		
WLAN channe	els	3	3		
Transmission	power	17 c	17 dBm		
Distance (ope	n field)	Max. 5 m (16 ft)			
Device pairing]		Activation/deactivation via service button Automatic switch-off after 10 min if no WLAN client is connected.		
Default SSID	and WLAN password				
	SSID	<a\$< td=""><td>SN>_<series no.=""></series></td><td></td></a\$<>	SN>_ <series no.=""></series>		
Exam			ASE4U10E S55845-2205 Country of Origin: Switzer Date/Series: 20181204A00 Mac address: 00A003162 Activation Key: P2TK44-ALONC-3VB0B-JI0	1-5 T 55, IP54	
		[4]	(1)	(2)	
		[1]	ASN	ASE4U10E	
		[2]	Date / series letter / series no.	20181204A0000001000	
Password			SSID 45678 password is preset and cannot be c	ASE4U10E_0000001000	

Modbus RTU interface		
Interface type		EIA-485, galvanically isolated
Baud rates		9.6 / 19.2 / 38.4 / 57.6 / 76.8 / 115.2 kBaud
Factory setting		19.2 kBaud
Internal bus termination		120 Ω , switchable with ABT Go
Internal bus polarization		270 Ω / 270 Ω – NOT switchable!

Modbus RTU interface				
Cabling		3-core cable - only inside building		
	Length	Max. 1000 m (3300 ft)		
	NOTE	The baud rate must be adapted to match the cable length.		
Protection		Short-circuit proof: Protection against faulty wiring at AC 24 V		
Maximum number of devices (nodes) in bus segment		31		

Function data

Control valve	3	EVG4U10E	EVF4U20E	DN150
Nominal flow		See "Type summary [▶ 15]"		
Adjustable flow as [%] of \dot{V}_{100}		5100 %		
Permissible media				
Control Water			±5 %	1
accuracy	Water with ethylene glycol	±10 %		-
Minimum con	trollable flow		1 % of \dot{V}_{100}	
Medium	Water	11:	20 °C	170 °C
temperature	Water with ethylene glycol	-1090 °C		-
Operating pressure p _s		1600 kPa	See "Type su	mmary [▶ 15]"
Differential pressure $\Delta p_{max} / \Delta p_s$		See "Type summary [▶ 15]"		
Flow char- acteristic curve	Control type "Volume flow control"	Selectable (linear / equal percentage optimized in closing range on ngl 14 / compensation for heat exchanger characteristic curve		
Leakage rate		Waterproof per EN 60534-4 L/1, im- proved class 5	00.03 % of $k_{\rm VS}$ value	
Mounting position		Upright to horizontal		 Valve/actuator: upright to hori- zontal Flow sensor: vertical with up- wards flow (rec- ommended); or horizontal with terminal box up- wards or down- wards
Valve body		Brass		
Blank flange		-	Cast iron	
Valve stem / s	seat / ball	Brass	ss Stainless steel	
Stem sealing	gland	EPDM		

Actuator	EVG4U10E	EVF4U20E DN6580	EVF4U20E DN100125, DN150
	GLA161.9E/HR	SAX61.03/HR	SAV61.00/HR
Positioning time (at the specified nominal stroke)	90 s	30 s	120 s
Positioning force	-	800 N	1600 N
Nominal torque	10 Nm		
Nominal rotational angle	90°	-	-
Nominal stroke	-	20 mm	40 mm

Flow measu	rement	EVG4U10E	EVF4U20E	DN150
Measuring method		Ultrasonic		Electromagnetic
Measuring	Water	±2 % (25100 % of V ₁₀₀)		
accuracy	Water with ethylene glycol	±6 % (25100 % of $\dot{V}_{100})$ $^{1)}$		-
Minimum flow measurement		0.8 % of V ₁₀₀		
Material of	DN1550	Brass	-	
measuring pipe	DN65		Brass	
	DN80		Nodular cast iron EN-GJS-500	-
	DN100125	-	Brass	
	DN150		-	Carbon steel ASTM A 105 with cor- rosion-resistant coat- ing (category C4 or C5 per ISO 12944-2)

1) Verified with Antifrogen® N by Clariant

Temperature measurement		EVG4U10E	EVF4U20E	
Measuring Absolute temp.		±0.6 °C at 20 °C		
accuracy		±0.8 °C	at 60 °C	
		(Pt1000 EN 6	00 EN 60751, class B)	
	Temp. difference	±0.2 K at	ΔT = 20 K	
Resolution		0.08	5 °C	
Prototype test certificate Module B per MID		A0445/2112/2007	DE-06-MI004-PTB011	
Direct immersion sensor		DS M10x1, Ø 5.2 x 26 mm, cable length 1.5 m		
	Permissible operating press.	PN16	-	
Housing		Stainless steel	-	
Protective pocket		G ½ B '', Ø 6.2 x 92.5 mm for temperature sensors Ø 6 x 105 mm		
	Permissible operating press.	PN	125	
	Material	Brass	Stainless steel	

Inputs

The inputs are protected against incorrect wiring AC/DC 24 V.

Туре	Range (over-range)	Resolution	Input resistance (R _{in})
AI 010 V	010 V (-111 V) DC 010 V = 0100 %	1 mV	100 kΩ
AI 210 V	210 V (111 V) DC 210 V = 0100 %	1 mV	100 kΩ
AI 420 mA	420 mA (020 mA) 420 mA = 0100 %	2.3 µA	<460 Ω

Туре	Range (over-range)	Resolution	Input resistance (R _{in})
AI 010 V	010 V (-111 V) DC 010 V = 0100 °C	1 mV	100 kΩ
AI 210 V	210 V (111 V) DC 210 V = 0100 °C	1 mV	100 kΩ
AI 420 mA	420 mA (020 mA) 420 mA = 0100 °C	2.3 μΑ	<460 Ω

Signal	input,	analog	(inpu	ut X1))

in control function "Heating circuit outside temperature compensated flow temperature control"

Туре	Range (over-range)	Resolution	Input resistance (R _{in})
AI Pt1000 (385/EU)		85 mK (CIOR -50400 °C) 0.153 °F	
AI (LG-)Ni1000	-40150 °C (-45160 °C) -40302 °F (-49320 °F)	55 mK 0.099 °F	-
AI Ni1000 DIN	_	45 mK 0.081 °F	
AI 010 V	010 V (-111 V) DC 010 V = -5050 °C	1 mV	100 kΩ

Pressure measurement, analog (inputs X1, X3)

in control function "Differential pressure control" - configuration with 2 pressure sensors				
Туре	Range (over-range)	Resolution	Input resistance (R _{in})	
AI 010 V	010 V (-111 V) DC 010 V = 01000 kPa	1 mV	100 kΩ	
AI 210 V	210 V (111 V) DC 210 V = 01000 kPa	1 mV	100 kΩ	
AI 420 mA	420 mA (020 mA) 420 mA = 01000 kPa	2.3 µA	<460 Ω	

Open connection: Negative voltage -3.1 V (line failure detection)

Actuator position feedback, analog (input U)				
Туре	Range (over-range)	Resolution	Input resistance (R _{in})	
AI 010 V	010 V (-111 V)	1 mV	100 kΩ	
Open connection: Negative voltage 2.1 V (line foilure detection)				

Open connection: Negative voltage -3.1 V (line failure detection)

Temperature measurement for power measurement, analog (inputs B7, B26)					
Type Range (over-range)		Resolution			
AI Pt1000 (385/EU)	-40150 °C (-45160 °C) -40302 °F (-49320 °F)	85 mK 0.153 °F			

Temperature measurement, analog (input X3) in control functions

"Flow temperature control" and "Heating circuit outside temperature compensated flow temperature control"

Туре	Range (over-range)	Resolution
AI Pt1000 (385/EU)		85 mK 0.153 °F
AI (LG-)Ni1000	-40150 °C (-45160 °C) -40302 °F (-49320 °F)	55 mK 0.099 °F
AI Ni1000 DIN		45 mK 0.081 °F

Differential pressure measurement, analog (input X3) in control function "Differential pressure control" - configuration with 1 differential pressure sensor

Туре	Range (over-range)	Resolution	Input resistance (R _{in})
AI 010 V	010 V (-111 V	1 mV	100 Ω
AI 010 V standard 0100 % (-10110 %) 1 m\		1 mV	
Onen connection: Negative veltage, 1.5.1/ 8.4.4 (line failure detection)			

Open connection: Negative voltage -1.5 V, 8 μA (line failure detection)

40

Flow measurement,	digital	(input DU)
-------------------	---------	------------

Only use the flow sensor specified in the datasheet.

Flow measurement, analog (input X3) for DN150			
Type Range (over-range) Resolution Input resistance (R _{in})			
AI 420 mA (020 mA) 2.3 μA <460 Ω			
Only use the flow sensor specified in the datasheet.			

Outputs

The outputs are protected against short circuiting and incorrect wiring AC/DC 24 V.

Position feedback, analog (output X2)			
Туре	Range (over-range)	Resolution	Output current / output impedance
AO 010 V	010 V (010.5 V)	11 mV	Max. 1 mA
AO 210 V	210 V (110.5 V)	11 mV	Max. 1 mA
AO 420 mA	420 mA (020 mA)	22 μΑ	<650 Ω

Actuator signal output, analog (output Y)			
Type Range (over-range) Resolution Output current		Output current	
AO 010 V	010 V (010.5 V)	11 mV	Max. 1 mA

Switching output relay Q1 (connection terminals Q13, Q14)		
Type Relay		
Switching voltage	AC 24 V / DC 30 V	
Permissible load current	100 mA	

Supply for field devices (outputs V ≂)		
Output voltage	AC/DC 24 V	
Permissible load current	10 A	
Protection against overload	None	

Conformity

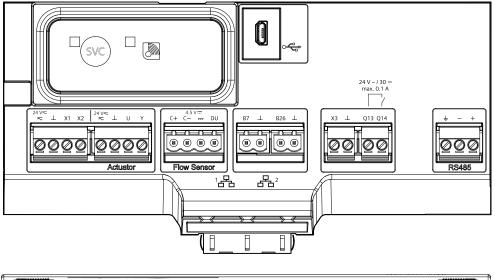
Protection class		
0	ical to horizontal installation g [▶ Error! Bookmark not	IP54 as per EN 60529
Insulation clas	SS	As per EN 60730
	AC/DC 24 V	Ш

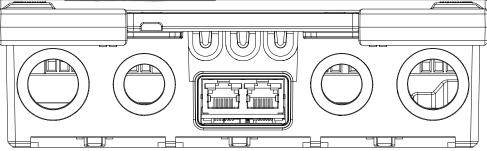
Ambient conditions		
Operation	1	As per IEC 60721-3-3 (1994)
	Climatic conditions	Class 3K5
	Mounting location	Indoors (weather-protected)
	Temperature (general)	-5<55 °C
	Humidity (non-condensing)	595 % r.h.
Transportation		As per IEC 60721-3-2 (1994)
	Climatic conditions	Class 2K3
	Temperature	-2570 °C
	Humidity	<95 % r.h.
Storage		As per IEC 60721-3-1 (1994)
	Climatic conditions	Class 1K5
	Temperature	-555 °C
	Humidity	595 % r.h.
Max. media temperature on coupled valve		120 °C

Directives, standards and approvals ²⁾		
EU conformity (CE)		
EVG / EVF.	. A5W	00056027
ASE4U10E	A5W	00055907
AVG4E / AV	/F4E A5W	00058665
GLA161.9E/ł	HR A5W	00026945
SAX61.03/HI	R 8000	061818
SAV61.03/HI	R 8000	078918
VVF42KC	A5W	90000768

Directives, standards and approvals ²⁾			
UK conform	nity (UKCA)		
	EVG / EVF	A5W00221216A	
	ASE4U10E	A5W00189149A	
	AVG4E / AVF4E	A5W00221215A	
	GLA161.9E/HR	A5W00221282A	
	SAX61.03/HR	A5W00185581A	
	SAV61.03/HR	A5W00197822A	
	VVF42KC	A5W00250666A	
RCM confo	rmity	1	
	EVG / EVF	A5W00056028	
	ASE4U10E	A5W00055908	
	AVG4E / AVF4E	A5W00058666	
	GLA161.9E/HR	A5W00026949	
	SAX61.03/HR	8000074421	
	SAV61.03/HR	8000078918	
EAC compl	iance	Eurasian compliance for all EVG/EVF	
Product sta	ndard	IEC EN 60730-1	
Radio stano	dards	RED 2014/53/EU ETSI EN 300 328 ETSI EN 301 489-1 ETSI EN 301 489-17	
Electromag	netic compatibility (field of use)	For residential, commercial, and industrial environments	
RoHS		2011/65/EU	
WLAN			
	Brazil	ANATEL Nº 08957-21-00548	
	Canada	ISED IC: 772C-LB1JP	
	China	CMIIT ID 2020DJ3810	
	Colombia	ANE GD-009578-E-2023	
	Japan	MIC ID: 007-AE0117	
	Kuwait	CITRA Cert. No. 7204	
	Malaysia	SIRIM RGQG/39A/0124/S(24-0416)	
	Philippines	ESD-RCE-2437917	
	Qatar	CRA/SM/2023/S-0014803	
	Saudi Arabia	Reg-No. 160033	
	Singapore	IMDA N5269-20	
	South Korea	KC R-R-S 7M-ASE4U10E	
	Thailand	NBTC SD00348-24_2024-01-30	
	United Arab Emirates	TDRA ER24640/23	
	United States	FCC ID: VPYLB1JP	

Directives, standards and approvals ²⁾									
BACnet	Conformance certificates (BTL, PICS)	https://www.bacnetinternational.net/btl							

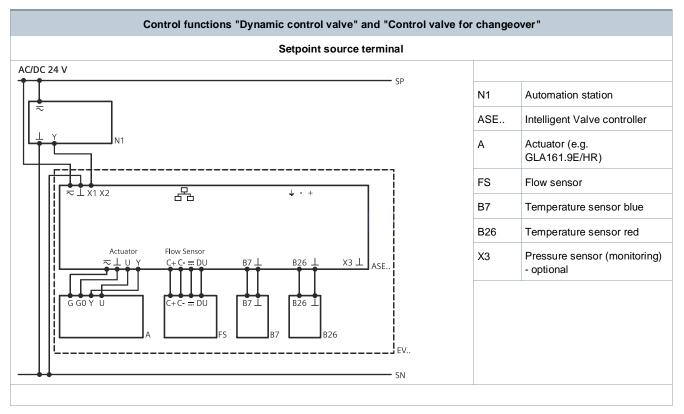

Environmental compatibility 2)

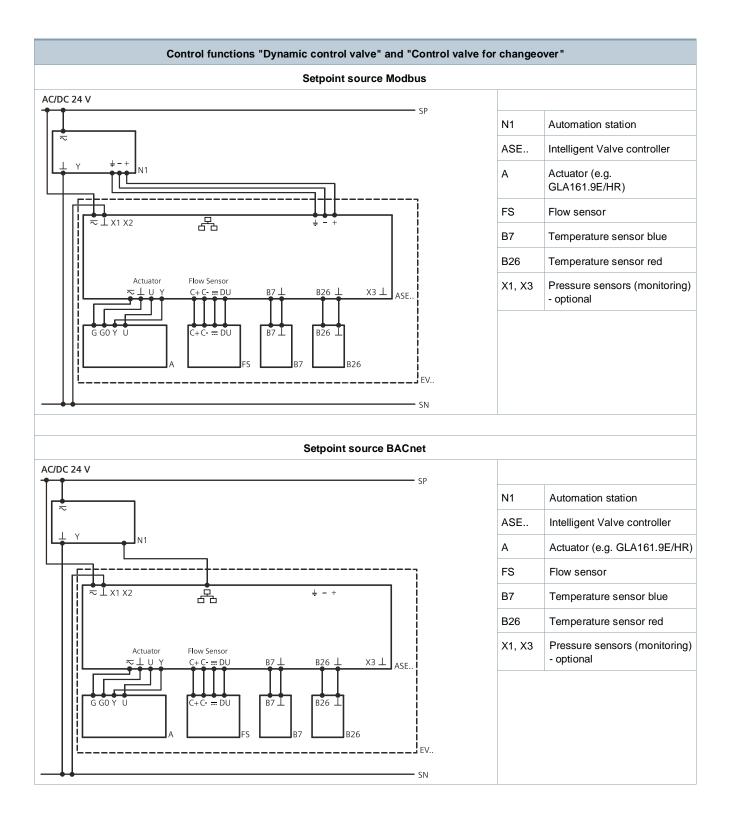

The product environmental declarations below contain data on environmentally compatible product design and assessments (RoHS compliance, material composition, packaging, environmental benefit, and disposal).

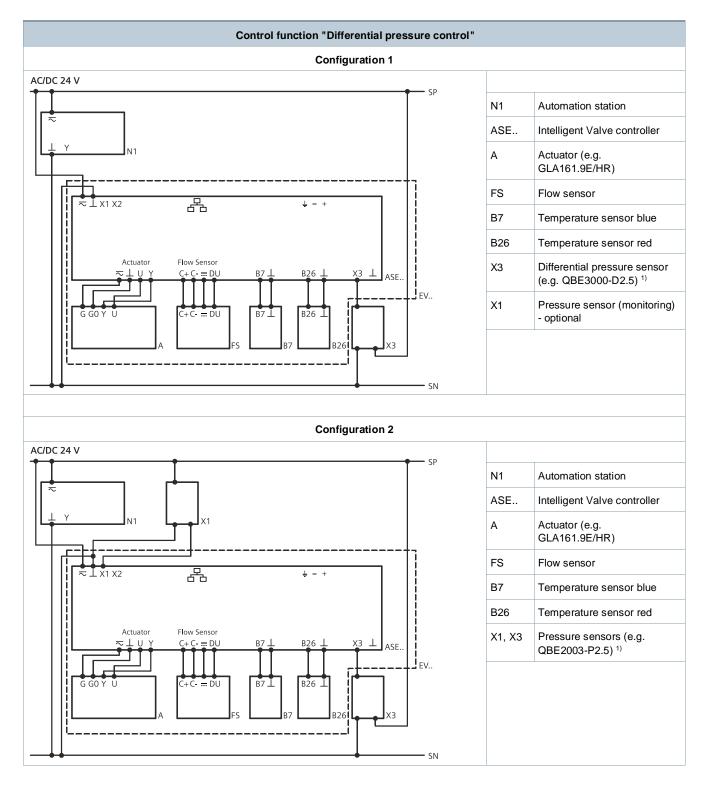
ASE4U10E	A5W00049332
AVG4E	A5W00261979
AVF4E	A5W00049465
ALF4E	A5W00049466
GLA161.9E/HR	A5W00026068
SAX61.03/HR	7173310559
SAV61.03/HR	7173310522
VVF42KC	A6V10824366
EZU10	A5W00049840
EZT	A5W00049841
EZU-WA, EZU-WB	A5W00055673

2) Documents can be downloaded at http://www.siemens.com/bt/download

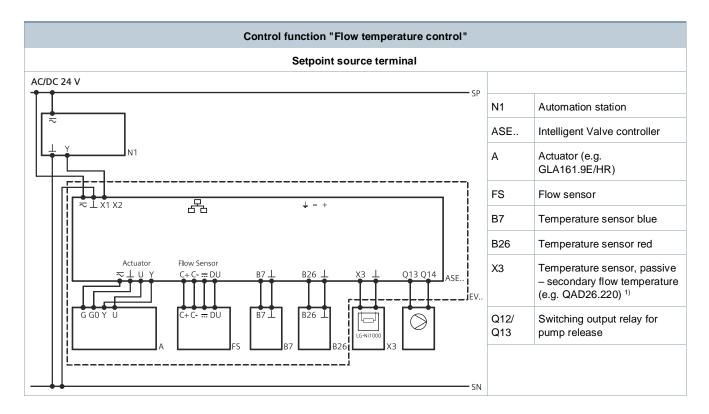
Connection terminals



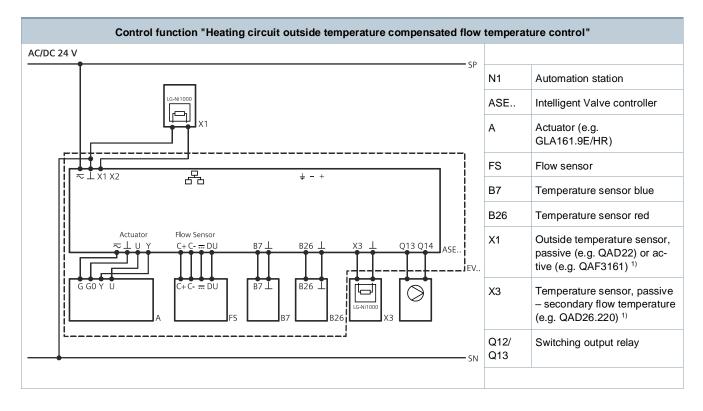

Connecting thread	Description	Terminal
1, 2 Ethernet	2 x RJ45 interface for 2-port Ethernet switch	
	Power SELV/PELV AC/DC 24 V	\sim
	System zero	\perp
	 Setpoint input Intelligent Valve: DC 0/210 V; 420 mA Optionally (unless otherwise occupied): Active pressure sensor Control function "Heating circuit outside temperature compensated flow temperature control": Passive or active temperature sensor 	X1
	Actual value output Intelligent Valve: DC 0/210 V; 420 mA	X2
USB	USB interface	●
Actuator	Field supply AC 24 V for actuator	\sim
	System zero	Ţ
	Position feedback actuator DC 010 V	U
	Positioning signal actuator DC 010 V	Y
Flow sensor	L-bus potential	C+
	L-bus neutral (galvanically insulated)	C-
	Power flow sensor (DC 4.5 V)	
	Pulse input	DU

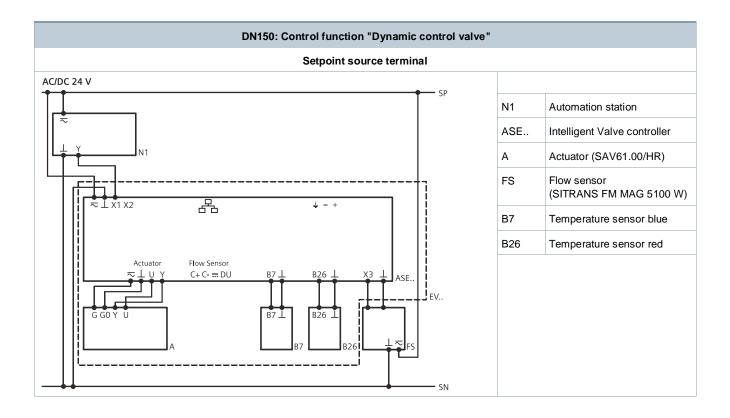

Connecting thread	Description	Terminal
Inputs analog	Passive temperature input	B7
	System zero	
	Passive temperature input	B26
	System zero	
	Universal input (DC 0/210 V; 420 mA / passive temperature input)	Х3
	System zero	L
Outputs	Switching output AC 24 V; DC 30 V; 0.1 A	Q13
		Q14
RS485	EIA-485 interface (Modbus RTU)	÷
	Supported from software version 1.18.xxxxx	-
		+
Service	Service button	
Display	Operation LED	SVC
Com/WLAN	WLAN button	~
Display	Communication LED	((;•

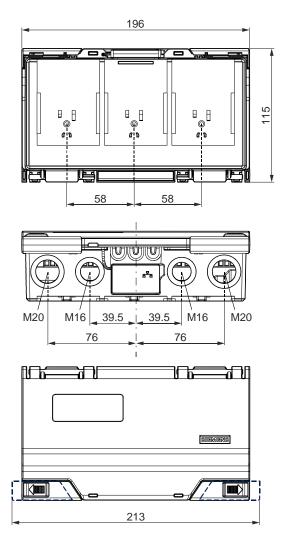
Connection diagrams

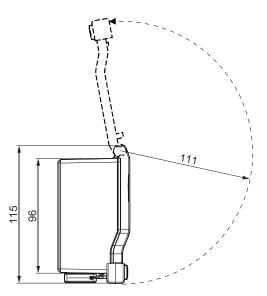


46



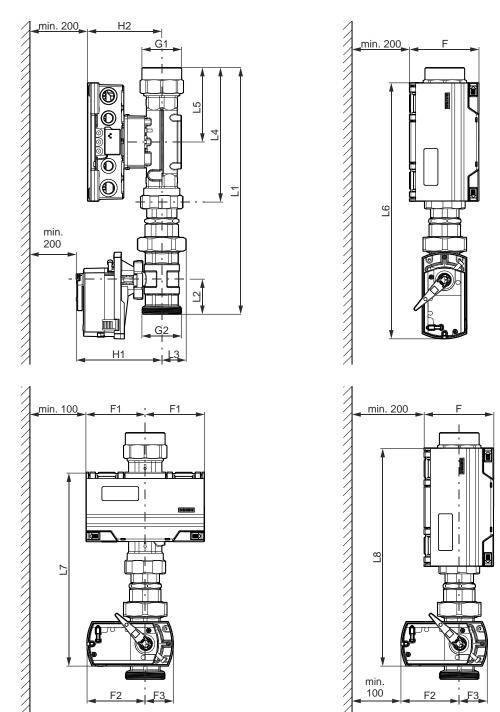

¹⁾ (Differential) pressure sensors are not included; they have to be ordered separately.


¹⁾ Temperature sensors are not included; they have to be ordered separately.

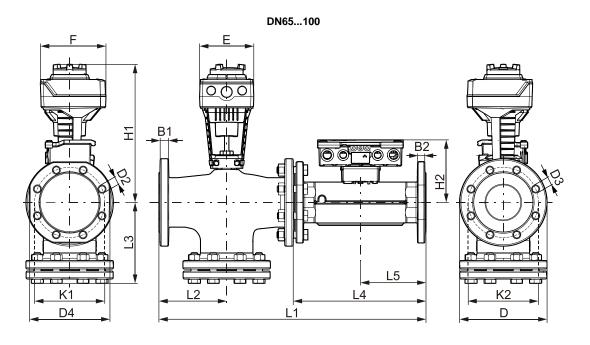


¹⁾ Temperature sensors are not included; they have to be ordered separately.

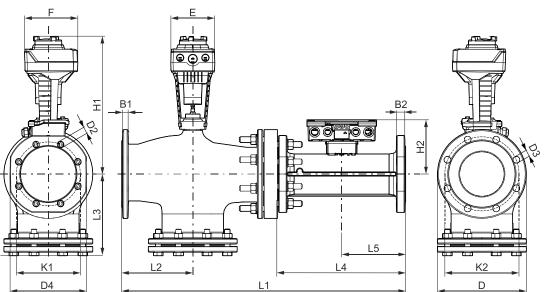
Intelligent Valve controller, ASE4U10E



Dimensions in mm

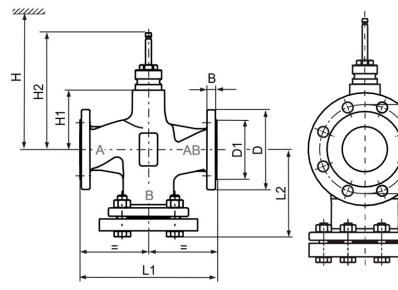


Threaded, EVG4U10E..



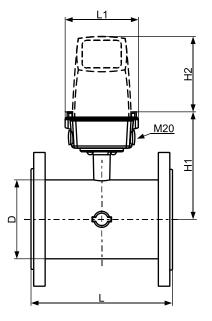
Dimensions in mm

Valve type	F	F1	F2	F3	G 1	G2	H1	H2	L1	L2	L3	L4	L5	L6	L7	L8	kg
EVG4U10E015					G 1	ΙB	100 F	110.5	232.5	43.5	20.5	117.5	67	375	217.5	314.5	2.5
EVG4U10E020					G 1	¼ B	129.5	113	260.5	44 5	24.5	136	71.5	339.5	239.5	279	2.9
EVG4U10E025	445	00	00	40	G 11	½ B	132	110	271	44.5	27.5	150.5	75	346	245.5	285	3.4
EVG4U10E032	115	98	98	46	G 2	2 B	136	116	256	50	35	142.5	78	382	224.5	321	3.7
EVG4U10E040					G 2	¼ B	141.5	400	373	58	38	216.5	122.5	385.5	288	325	5.8
EVG4U10E050					G 2	¾ B	154.5	123	354.5	62.5	48	229.5	123	363.5	264.5	304	6.8


DN125

Dimensions in mm

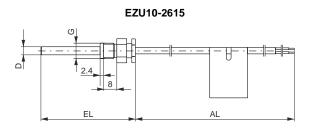
Valve type	B1	B2	D	D2	D3	D4	Е	F	H1	H2	K1	K2	L1	L2	L3	L4	L5	kg
EVF4U20E065	17	19	184	18 (4x)	19 (4x)	170			040	136	14	45	591	145	173	000	450	30.3
EVF4U20E080	19	18	200			185	404	450	316	143	16	60	611	155	185	300	150	40.9
EVF4U20E100	20		220	19 (8x)	19 (8x)	04.0	124	150	375	450	400	180	711	175	205	000	400	61.6
EVF4U20E125	15	23	250			216			388	153	180	210	799	200	230	360	180	81.6

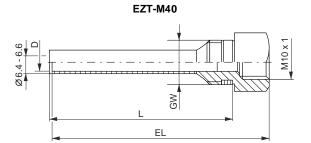

Dimensions in mm

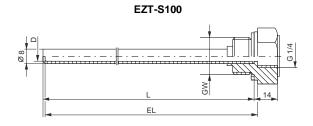
2

 $\mathbf{\mathbf{x}}$

Valve type	В	D	D1	D2	L1	L2	L3	H1	H2	к	kg
VVF42.150KC	15	284	211	23 (8x)	480	240	272.5	150.5	267	240	65

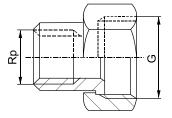

Flow sensor and transmitter




Dimensions in mm

Туре	DN	D	L	L1	H1	H2	kg
SITRANS FM MAG 5100 W	450	100	000	455	000	170	00.0
SITRANS FM MAG 5000	150	168	300	155	232	178	26.8

Temperature sensors EZU.., protective pockets EZT..



Dimensions in mm

Т	emperatu	ire senso	rs				Protect	ive poc	kets		
Туре	D	EL	G	AL		Туре	D	EL	L	GW	sw
EZU10-2615	5.2	26.5	M10x1	1500		EZT-M40	5.2	50	40	G ¼	17
EZU10-10025				2500		EZT-S100	6.2	100	92.5	G ½	27
EZU10-10060	6	92.5	-	6000	-		I				

Fittings

For 2-port valves EVG	or 2-port valves EVG4U10E (2-piece set)				
Туре	Valve type		ch]		
ALG152 / ALG152B	EVG4U10E015	G 1 B	Rp ½		
ALG202 / ALG202B	EVG4U10E020	G 1¼ B	Rp ¾		
ALG252 / ALG252B	EVG4U10E025	G 1½ B	Rp 1		
ALG322 / ALG322B	EVG4U10E032	G 2 B	Rp 1¼		
ALG402 / ALG402B	EVG4U10E040	G 2¼ B	Rp 1½		
ALG502 / ALG502B	EVG4U10E050	G 2¾ B	Rp 2		

Revision information

Туре	Valid from rev. no.	Туре	Valid from rev. no.
EVG4U10E015 S55300-M100	В	EVF4U20E065 S55300-M106	А
EVG4U10E020 S55300-M101	В	EVF4U20E080 S55300-M107	А
EVG4U10E025 S55300-M102	В	EVF4U20E100 S55300-M108	А
EVG4U10E032 S55300-M103	В	EVF4U20E125 S55300-M109	А
EVG4U10E040 S55300-M104	В		
EVG4U10E050 S55300-M105	В		

Model info	ASN=ASE4U10E; HW=0202
Firmware revision	09.54.14.11; APP=1.22.11235; SVS-300.6.SBC=15.00; ISC=01.00
Application software version	AAS-20:SU=SiUn; APT=HvacFnct34; APTV=2.514

Issued by Siemens Switzerland Ltd Smart Infrastructure Global Headquarters Theilerstrasse 1a CH-6300 Zug +41 58 724 2424 www.siemens.com/buildingtechnologies

© Siemens 2019 - 2025 Technical specifications and availability subject to change without notice.